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We extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon
(3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects
of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structural and reaction
observables of p- and lower-sd-shell nuclei. As first application we concentrate on energy levels of the 9Be
system for which all excited states lie above the n-8Be threshold. For all energy levels, the inclusion of the
continuum significantly improves the agreement with experiment, which was an issue in earlier standard no-core
shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable
statements about the quality of the adopted 3N interaction from chiral effective field theory. In particular, we find
the 1

2
+ resonance energy, which is of particular astrophysical interest, in very good agreement with experiment.

PACS numbers: 21.60.De, 21.10.-k, 24.10-i, 27.20+n

Introduction. Over recent years the inclusion of three-
nucleon (3N) interactions into different ab initio approaches
for nuclear structure calculations has been challenging but
successfully completed with a variety of interesting applica-
tions [1–16]. However, beyond the few-body domain, the in-
clusion of 3N interactions in ab initio studies of continuum
effects in weakly-bound systems or nuclear reactions have
been completed for the five-nucleon system only, e.g., within
the Green’s functionMonte-Carlo (GFMC) approach [17] and
the no-core shell model combined with the resonating group
method (NCSM/RGM) [18, 19]. To arrive at a more efficient
unified ab initio theory applicable to nuclear structure and re-
actions on equal footing, the NCSM/RGM approach has been
recently generalized to the no-core shell model with contin-
uum (NCSMC) [20, 21]. In Ref. [22], the NCSMC was ap-
plied to p-4He scattering for the first time including 3N inter-
actions using an algorithm restricted to A=3 and A=4 target
nuclei. In this communication, we extend the NCSMC for-
malism to include 3N interactions in a general framework ap-
plicable to arbitrary p- and lower-sd shell target nuclei. This
is a major step towards a refined nuclear structure and reaction
theory that allows predictions also for observables affected by
continuum degrees of freedom starting from the best Hamilto-
nians currently available. This is vital to provide robust QCD-
based predictions starting from chiral effective field theory in-
teractions, e.g., for light exotic nuclei.

As a first application, we study the effects of the contin-
uum and of the 3N interaction on the energy levels of the 9Be
nucleus. This system is interesting because only its ground-
state is bound, while all excited states are unstable and subject
to neutron emission as the n-8Be threshold energy is located
experimentally at 1.665MeV [23], being the lowest neutron
threshold of all stable nuclei. Therefore, it is appealing to
study the impact of the continuum on the excited-state reso-
nances with particular focus on the effects of the chiral 3N
interactions. Earlier studies of these energy levels within the
NCSM showed problems with the model-space convergence,

and, in particular the positive-parity states were found too
high in excitation energy compared to experiment [24, 25].
Also the splitting between the lowest 5/2− and 1/2− states
is found overestimated in no-core shell model (NCSM) cal-
culations using the INOY interaction model that includes 3N
effects [24]. Moreover, GFMC calculations [26] show strong
sensitivity of the splitting with respect to 3N interactions. As
including the 3N effects appeared to shift the splitting away
from the experiment, these studies seemed to highlight defi-
ciencies of 3N force models. Furthermore, 9Be is interest-
ing for astrophysics, because it provides seed material for the
production of 12C in the explosive nucleosynthesis of core-
collapse supernovae via the (ααn)9Be(αn)12C reaction, an al-
ternative to the triple-α reaction [25, 27, 28] bridging the
A = 8 instability gap and triggering the r process. In partic-
ular, the description of the first 12

+ state of 9Be slightly above
threshold poses a long standing problem [25, 27, 29], relevant
for the cross sections and reaction rates.
The No-Core Shell Model with Continuum and 3N forces.

To arrive at the ab-initio description of the 9Be nucleus we
generalize the no-core shell model with continuum (NC-
SMC) [20, 21] to include 3N interactions. In the following
we highlight the quantities affected by the inclusion of 3N in-
teractions, while we refer to Ref. [21] for details about the
general formalism and the implementation of the NCSMC. In
the NCSMC the eigenstates of the A-body system are repre-
sented by

|ΨJπTA ⟩ =
∑

λ

cλ |AλJπT ⟩SD +
∑

ν

∫

drr2 γν(r)
r
Âν |ΦJπTνr ⟩SD ,

(1)
constituting an expansion in an over-complete basis of non-
orthogonal states. The first term consists of a superposition
of eigenstates of the A-nucleon system computed within the
NCSM. These describe the correlations between all nucleons
in localized configurations, but have limitations concerning
the description of nuclear clustering and scattering states. This
is cured by the expansion in (A−a, a) binary-cluster channel
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states, |ΦJπTνr ⟩, in the second term of Eq. (1). They are defined
as

|ΦJπTνr ⟩SD =
[

(

|A − aα1Iπ11 T1⟩ |aα2I
π2
2 T2⟩

)(sT ) |rℓ⟩
](JπT )

, (2)

with the collective index ν = {A−a,α1, Iπ11 , T1, a,α2, I
π2
2 , T2,

sℓ}, and the state |rℓ⟩ describing the relative motion of the
clusters with relative distance r and relative orbital angular
momentum ℓ [19]. The expansion coefficients cλ and the
continuous relative-motion amplitudes γν(r) result from the
Schrödinger equation,

(

HNCSM h̄
h̄ H̄

) (

c
χ

)

= E
(

1 ḡ
ḡ 1

) (

c
χ

)

, (3)

represented using expansion (1). Here orthogonalized chan-
nel states have been used, yielding the relative-motion wave
functions χ(r) as detailed in Refs. [19, 21]. The generaliza-
tion of the NCSMC formalism to 3N interactions affects the
Hamiltonian contributions in Eq. (3). First of all, the A- and
(A − a)-body NCSM eigenstates are computed including the
3N interaction. The former affect the eigenvalues that enter
the diagonal matrix HNCSM describing the NCSM sector of the
Hamiltonian kernel. Additionally, in the NCSM/RGMHamil-
tonian kernel H̄ new contributions including three-body den-
sities generated by the 3N interactions need to be considered,
as discussed in Ref. [18]. Here, we rely on the formalism
using uncoupled densities to access A ≥ 5 nuclei. Finally,
we generalize the Hamiltonian form factor h̄ to include 3N
forces. Again, we use the algorithm with uncoupled densi-
ties introduced in Ref. [18] and obtain for the 3N interaction
contribution to the Hamiltonian form factor before orthogo-
nalization

SD⟨AλJπMJTMT
∣

∣

∣

√
A 12 (A − 1)(A − 2)V

3N
A−2A−1 A |Φ

JπT
κ ⟩SD

=
1
12

∑

M1mj

∑

MT1mt

(

I1 j
M1mj

∣

∣

∣

∣

∣

∣

J
MJ

)(

T1 1
2

MT1mt

∣

∣

∣

∣

∣

∣

T
MT

)

∑

abce f
⟨cba|V3N | f e j̃ ⟩

SD⟨AλJπMJTMT | a†aa
†
ba
†
ca f ae |A−1α1I

π1
1 M1T1MT1⟩SD , (4)

with

|ΦJ
πT
κ ⟩SD =

[ ∣

∣

∣A−1α1Iπ11 T1
〉

SD
|nℓ j 12 ⟩

](JπT )

=
∑

M1mj

∑

MT1mt

(

I1 j
M1mj

∣
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∣

∣

∣

∣

J
MJ

) (

T1 1
2

MT1mt

∣

∣

∣

∣

∣

∣

T
MT

)

× |A−1α1Iπ11 M1T1MT1⟩SD |nℓ jm j
1
2mt⟩ (5)

where | j̃⟩≡|nℓ jm j
1
2mt⟩ denotes the HO single-particle state of

the projectile. To solve the NCSMC equations (3) we use the
coupled-channel R-matrix method on a Langrange mesh [30–
32]. We adopt a channel radius of 18 fm and 40 mesh points
throughout, and have checked that our calculations are inde-
pendent of these parameters.
SRG-Transformed NN+3N Interactions. We use the nu-

clear interactions derived from chiral effective field the-
ory [33, 34], namely the NN interaction at N3LO by Entem
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FIG. 1: (color online) NCSMC n-8Be phase shifts and eigenphase
shifts for negative parity at Nmax = 8 computed with NCSM eigen-
vectors ( ) compared to the use of IT-NCSM vectors ( ). Re-
maining parameters are !Ω = 20MeV, α = 0.0625 fm4, and E3max =
14. Same colors correspond to identical angular momenta.

& Machleidt [35] and the 3N interaction at N2LO in its lo-
cal form [36] with cutoff Λ3N = 400MeV/c [3]. This choice
is motivated by the observation that the Λ3N = 500MeV/c
Hamiltonian overbinds the n-8Be threshold by about 800 keV
in IT-NCSM calculations at Nmax = 12, unlike the reduced-
cutoff 3N interaction. Additionally, we soften the interac-
tions, using the similarity renormalization group (SRG)[2,
37–40]. Depending on whether we include the chiral 3N in-
teraction in the initial Hamiltonian or not, we arrive at the
NN+3N-full and the NN+3N-induced Hamiltonians, respec-
tively. Both Hamiltonians include SRG-induced 3N interac-
tions but neglect SRG-induced four- and multi-nucleon inter-
actions. However, the latter are typically negligible for nuclei
with less than 10 nucleons as discussed in Refs. [2, 39, 40].
(Eigen)Phase Shifts. As first application of the NCSMC

with explicit 3N interactions we focus on the excitation spec-
trum of 9Be up to about 8MeV above the n-8Be threshold.
We include in the first term of expansion (1) all 9Be states we
find in this energy range with the NCSM. These are the four
positive-parity states 1

2
+, 52

+, 32
+, 92

+, and the six negative-
parity states 3

2
−, 52

−, 12
−, 32

−, 72
−, and 5

2
−. This selection is

consistent with experimental data [23] showing a gap of about
3MeV between the second 5

2
− state we include, and the next

known resonance at 11.2MeV, which is also found near this
energy in the NCSM. For the second term of expansion (1) we
restrict ourselves to channels with single-neutron projectiles
and 8Be targets. For 8Be we include the 0+ ground as well as
its first excited 2+ state from the NCSM, i.e., in a bound-state
approximation.
Evidently, the NCSMC relies on a set of NCSM eigen-

states whose computation quickly becomes demanding for
large model spaces. To cope with this we use the importance-
truncated NCSM (IT-NCSM). This reduces the computational
cost not only for the input NCSM vectors, but, even more
importantly, also for the NCSM/RGM kernels H̄ and the
NCSMC coupling form factors ḡ and h̄, because only rele-
vant Slater determinants are considered in the expansion of
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FIG. 2: (color online) Nmax dependence of NCSMC n-8Be eigen-
phase shifts. The left- and right-hand columns show the results
for the NN+3N-induced and NN+3N-full Hamiltonian, respectively.
Remaining parameters identical to Fig. 1.

the computed eigenstates. As discussed in Ref. [41] the IT-
NCSM usually includes the a posteriori extrapolation to the
full NCSM space. For (eigen)phase shifts we waive such ex-
trapolations and use IT-NCSM eigenvectors computed with
the smallest importance thresholds κmin = 2 · 10−5 and Cmin =
10−4. We assess the quality of the IT in Fig. 1 by direct com-
parison with phase shifts computed with full NCSM vectors
in the largest feasible model space, i.e., Nmax = 8. Overall, we
find the (eigen)phase shifts with and without the use of the IT
on top of each other. The only exceptions are the 5

2
− and 7

2
−

resonance positions near 7MeV for which we find differences
of about 100 keV, while the non-resonant 52

− eigenphase shift
is not affected. For the results presented in the following we
use IT-NCSM eigenvectors for Nmax ≥ 7. Furthermore, we
concentrate the following discussions on the physically more
relevant eigenphase shifts, while phase-shift plots are included
in the Supplemental Material [42].
Next, we analyze the convergence of the n-8Be eigenphase

shifts with respect to the HO model-space parameter Nmax.
In Fig. 2 we show the results for the NN+3N-induced and
NN+3N-full Hamiltonians. For negative parity changing the
model-space size almost exclusively affects the resonance po-
sitions. The typical convergence pattern shows a shift of the
resonance positions when going from Nmax = 8 to 10 but only
a minor change from the step to Nmax = 12. Exceptions are
the 7

2
− and the first 52

− resonances that are practically inde-
pendent of Nmax. We do not expect that an Nmax = 14 cal-
culation would significantly change the present results. Also
the positive-parity eigenphase shifts are most sensitive to the
model-space size near resonances. The sole exception is the
1
2
+ eigenphase shift that is affected at all energies. Overall,
the Nmax dependence is stronger than for the negative-parity
partial waves. Nevertheless, we use the Nmax = 11 results for
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FIG. 3: (color online) SRG flow-parameter dependence of the NC-
SMC n-8Be eigenphase shifts for the NN+3N-full Hamiltonian at
Nmax = 10 (11) for negative (positive) parity. Remaining parameters
identical to Fig. 1.

the investigation of the positive-parity spectrum of 9Be in the
following.
Since we use SRG-transformed Hamiltonians we check

the dependence of our results on the flow parameter α. Al-
though flow-parameter dependencies are typically negligible
in the domain of light nuclei [2, 40] and we employ the
3N interaction with cutoff Λ3N = 400MeV/c that addition-
ally reduces SRG-induced multi-nucleon forces [3], possible
non-convergences or inconsistent truncations may neverthe-
less cause α dependencies, cf. Refs. [6, 7, 10, 18]. Hence,
we study the n-8Be eigenphase shifts for flow parameters
α = 0.04, 0.0625, and 0.08 fm4 for the NN+3N-full Hamil-
tonian in Fig. 3. For negative parity we find only negligible
differences between the eigenphase shifts for α = 0.0625 and
0.08 fm4. In contrast, for α = 0.04 fm4 we observe larger de-
viations at least near resonances. This is most likely due to
the slower convergence of the many-body calculation for this
smaller flow-parameter as the direction of the deviations is
consistent with the Nmax-convergence pattern of Fig. 2. For
positive parity the overall conclusions are identical, however,
the differences are larger compared to the negative-parity re-
sults. Again this may be tied to the slower rate of convergence
we observed for positive parity in Fig. 2. For these reasons we
use α = 0.0625 fm4 in the following.
As argued above, contributions to the α dependence could

also originate from additional truncations. Although we ex-
ploit the JT -coupled storage scheme for the 3N matrix ele-
ments [2, 40] we have to truncate the set of 3N matrix el-
ements by specifying a maximum three-nucleon energy via
E3max ≤ e1 + e2 + e3 with ei as single-particle HO energy
quantum number. For all calculations presented here we use
E3max = 14. For the NCSM/RGM kernels H̄ we found almost
no dependence on E3max in calculations of neutron elastic scat-
tering on 4He [18]. The sensitivity of the NCSMC Hamilto-
nian form factors h̄ is still smaller, because of the Nmax trun-
cation of the composite eigenstates.

9Be Energy Levels. For a direct assessment of the im-
pact of the continuum and the 3N interactions on the 9Be en-
ergy levels, we extract the resonance centroids ER with corre-
sponding widths Γ from the eigenphase shifts shown in Fig 2.
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FIG. 4: (color online) Negative (a) and positive (b) parity spectrum of
9Be relative to the n-8Be threshold as function of Nmax for the NCSM
(left-hand columns) and NCSMC (right-hand columns) compared to
experiment [23]. Remaining parameters are !Ω = 20MeV and α =
0.0625 fm4. See text for further explanations.

Following Refs. [20, 21], we extract the centroids from the
maximum of the derivative of the eigenphase shifts with re-
spect to the kinetic energy, i.e., ER is defined by the inflec-
tion point of the eigenphase shifts. The width follows from
Γ = 2/

(

dδ(Ekin)/dEkin
)

∣

∣

∣

Ekin=ER
with eigenphase shifts δ in units

of radians [43]. Besides resonances, the NCSMC approach
also yields information about bound states if we apply the R-
matrix approach with bound-state boundary conditions [44].
We find only one bound state, the 3

2
− ground state of 9Be

with energies −49.17MeV and −54.87MeV for the NN+3N-
induced and NN+3N-full Hamiltonians, respectively.
In Fig. 4(a) and (b) we show the energy spectrum of 9Be

relative to the n-8Be threshold computed with the NN+3N-
full Hamiltonian for negative and positive parity, respectively.
Each panel shows the convergence pattern of the energy levels
with respect to the model-space size Nmax for the NCSM, i.e.,
without continuum degrees of freedom, and for the NCSMC,
i.e., including continuum effects.
Comparing NCSM and NCSMC results for negative parity

at fixed Nmax, we find for all states significant contributions

from the continuum coupling. The sole exception is the 7
2
−

state, where the effects stay below 0.5MeV. The NCSMC re-
duces the energy differences to the n-8Be threshold compared
to the NCSM for all states and for all Nmax. Concerning the
dependence on the model-space size for NCSMC increasing
Nmax from 6 to 12 produces only small energy shifts, which
are slightly larger for the higher-excited states but remain well
below 0.5MeV. Hence, the NCSMC calculations are well con-
verged, as already observed for the eigenphase shifts in Fig. 2.
This is different for the NCSM energies, which show signif-
icantly larger changes hinting at less converged calculations.
This is of course expected, because all excited states of 9Be
are resonances and the NCSM basis of A-body HO Slater de-
terminants is not designed for a proper description of con-
tinuum states. Altogether, the NCSMC generally improves
the agreement with experiment, and we find excellent agree-
ment for the 12

− and second 5
2
− resonances beyond Nmax = 10.

Note that also the 9Be ground-state energy is lowered by about
0.5MeV due the model-space extension by n-8Be basis states
and its agreement with experiment is improved.
The most dramatic effects due to the continuum degrees

of freedom are found in the positive-parity states, as evident
from Fig. 4(b) by comparing the energies between the two ap-
proaches at fixed Nmax. Once again, the NCSMC reduces all
energy differences relative to the n-8Be threshold compared
to the NCSM, leading to an improved agreement with experi-
ment. The agreement is particularly striking for the S -wave
dominated 1

2
+ state, whose energy at Nmax = 7 is shifted

by the continuum degrees of freedom by about 5MeV right
on top of its experimental position slightly above threshold,
and remains practically constant when we increase the model-
space size further to Nmax = 11. Also the remaining NCSMC
energies are much less affected by increasing Nmax than the
NCSM energies. We find the 32

+ resonance, dominated by the
4S 3

2
partial wave, in good agreement with experiment, while

discrepancies remain larger for the 52
+ and 9

2
+ resonances. Fi-

nally, we note that contributions from the broad 4+ state of 8Be
might improve the description of the 92

+ resonance of 9Be.
In Fig. 5 we study the effects of the initial chiral 3N inter-

action on the 9Be energy levels by comparing the spectrum
to the one for the NN+3N-induced Hamiltonian including the
SRG-induced 3N interactions only.
For negative parity, all states, except the first 52

− resonance,
are sensitive to the inclusion of the initial chiral 3N interaction
with effects of roughly similar size for both the NCSM and the
NCSMC: the inclusion of the chiral 3N interaction increases
the resonance energies relative to the threshold. Because the
NCSM energy differences for the NN+3N-induced Hamilto-
nian are typically close to or above the experimental values,
the agreement with experiment deteriorates when the initial
3N interaction is included. In contrast, the NCSMC energy
differences for the NN+3N-induced Hamiltonian are typically
below the experimental ones, and the overall agreement with
experiment is clearly improved due to the initial chiral 3N in-
teraction. This conclusion would have been opposite based on
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FIG. 5: (color online) Negative (a) and positive (b) parity spec-
trum of 9Be relative to the n-8Be threshold at Nmax = 12 and 11,
respectively. Shown are NCSM (first two columns) and NCSMC
(last two columns) results compared to experiment [23]. First and
last columns contain the energies for the NN+3N-induced and the
second and fourth column for the NN+3N-full Hamiltonian, respec-
tively. Shaded areas denote the width of the energy levels. Remain-
ing parameters identical to Fig. 4.

the NCSM alone, and highlights the importance of a proper
treatment of the continuum as in the NCSMC to correctly as-
sess the role of the 3N force. Interestingly, the 5

2
− resonance

is not affected at all by the inclusion of the chiral 3N interac-
tions, and for the 72

− state the energy shift caused by the chiral
3N interaction has the wrong sign, hinting at possible defi-
ciencies in the spin-orbit structure of the initial Hamiltonian.
In Fig. 5(b) we find the positive-parity states with both meth-
ods rather insensitive to initial 3N interactions. For the 92

+ and
3
2
+ states we find slightly increased energies and minor effects
for the 5

2
+ energy. The 1

2
+ state is particularly unaffected and

remains slightly above threshold in excellent agreement with
experiment for both Hamiltonians. Note, however, that we
found this state very weakly bound in calculations with NN
forces only (not shown).
Finally, for the NCSMC calculations in Fig. 5 we com-

pare the extracted resonance widths to experiment. Overall
the widths are of the same order of magnitude but typically

smaller than the experimental ones, except for the 9
2
+ and the

5
2
− resonances. For the 1

2
−, 12

+ and 5
2
+ widths we find good

agreement with experiment. In particular, the narrow 5
2
− reso-

nance with experimental width of 0.78 keV is also very narrow
in our NCSMC calculations. See Supplemental Material [42]
for a table of the extracted energies and widths.
Conclusions. We have generalized the NCSMC approach

to explicitly include 3N interactions with access to p- and
lower-sd-shell target nuclei, and have studied the energy spec-
trum of 9Be as first application. We have found significant
contributions of the continuum degrees of freedom, in par-
ticular for states with low angular momenta for which the
centrifugal barrier is small or nonexistent. The continuum
contributions significantly improve the model-space conver-
gence, such that the 9Be spectrum is essentially converged
at Nmax = 6. Furthermore, we have found the NCSMC par-
ticularly important for the assessment of the 3N interactions,
which can be misleading based on NCSM calculations alone.
With the NCSMC we found the chiral 3N interaction gener-
ally improving the agreement with experiment for the low-
energy spectrum of 9Be. The sole exception is the 7

2
− state,

which is rather insensitive to both additional continuum de-
grees of freedom and larger model spaces. Although we can-
not rule out the relevance of cluster structures beyond the
single-nucleon binary-cluster ansatz used here, one might ex-
pect larger sensitivities to the NCSM model-space size if such
structures were to be relevant. Therefore, the present devia-
tions from experiment are likely to be connected to deficien-
cies of the chiral NN+3N Hamiltonian.
Future work will use the 9Be wave function with proper

asymptotic behaviour with respect to the n-8Be threshold to
calculate various observables, including E1 transitions and
the n-8Be capture cross section. Furthermore, the formalism
will be generalized to multi-nucleon projectiles, namely the
deuteron, 3H, 3He and 4He.
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FIG. 1: (color online) Nmax dependence of NCSMC n-8Be
phase shifts and eigenphase shifts. The left- and right-
hand columns show the results for the NN+3N-induced and
NN+3N-full Hamiltonian, respectively. Remaining parame-
ters are !Ω = 20MeV, α = 0.0625 fm4, and E3max = 14.
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FIG. 2: (color online) SRG flow-parameter dependence of
the NCSMC n-8Be phase shifts and eigenphase shifts for
the NN+3N-full Hamiltonian at Nmax = 10 (11) for negative
(positive) parity. Remaining parameters are !Ω = 20MeV,
and E3max = 14.

TABLE I: Resonance energies relative to the n-8Be thresh-
old and corresponding width in MeV for NCSMC with the
NN+3N-full Hamiltonian with Λ3N = 400MeV/c extracted
as explained in the text in comparison to experiment [23].
For positive and negative parity the model-space truncation
Nmax = 11 and 12 is used, respectively.

NCSMC experiment
9Be states ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]

1
2
+ 0.012 0.09 0.019 0.22
5
2
+ 2.85 0.41 1.38 0.28
3
2
+ 3.39 0.17 3.03 0.74
9
2
+ 7.48 2.25 5.09 1.33
3
2
− -1.367 - -1.66 -
1
2
− 1.15 0.95 1.11 1.08
5
2
− 1.25 0.02 keV 0.76 0.78 keV
3
2
− 3.4 0.26 3.92 1.33
5
2
− 6.21 2.22 6.27 1.0
7
2
− 6.21 0.84 4.71 1.21


